Solution 1:
var arr = [23, 45, 67, 78, 89, 96];
function binarySearch(arr, ele) {
if (arr.length == 0) {
return false;
}
if (arr[arr.length - 1] < ele) {
return false;
}
if (arr[0] > ele) {
return false;
}
var middle = Math.floor(arr.length / 2);
if (arr[middle] == ele) {
return true;
}
if (arr[middle] < ele) {
var newArr1 = arr.slice(middle + 1);
return binarySearch(newArr1, ele);
} else {
var newArr2 = arr.slice(0, middle);
return binarySearch(newArr2, ele);
}
}
var res = binarySearch(arr, 67);
console.log(res);
Solution 2:
function binarySearch(sortedArr, key) {
var start = 0
var end = sortedArr.length - 1
while (start <= end) {
var middle = Math.floor((start + end) / 2)
if (sortedArr[middle] === key) {
return middle
} else if (sortedArr[middle] < key) {
start = middle + 1
} else if (sortedArr[middle] > key){
end = middle -1
}
}
return -1
}
var arr1 = [234, 43, 55, 63, 5, 6, 235, 547, 23];
var sortedArr = arr1.sort((a, b) => {
return a - b
})
console.log("sortedArray", sortedArr)
var result = binarySearch(sortedArr, 63)
console.log(result)
Overall, this implementation has a time complexity of O(log n),
which is much faster than a linear search with a time complexity of O(n).
No comments:
Post a Comment